25 research outputs found

    How to mend a broken heart?

    Get PDF
    No abstract available

    Risk assessment in patients with an acute ST-elevation myocardial infarction

    Get PDF
    ST-elevation myocardial infarction (STEMI) is one of the leading causes of mortality and morbidity worldwide. While the survival after acute STEMI has considerably improved, mortality rate still remains high, especially in high-risk patients. Survival after acute STEMI is influenced by clinical characteristics such as age as well as the presence of comorbidities. However, during emergency care increasing access to tools such as the electrocardiogram, chest x-ray and echocardiography can provide additional information helping to further risk stratify patients. In the invasive setting, this can also include coronary angiography, invasive hemodynamic recordings and angiographic assessments of coronary flow and myocardial perfusion. We outline the common investigations used in STEMI and their role in risk assessment of patients with an acute STEMI

    Perivascular mast cells regulate vein graft neointimal formation and remodeling

    Get PDF
    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling

    Safety of guidewire-based measurement of fractional flow reserve and the index of microvascular resistance using intravenous adenosine in patients with acute or recent myocardial infarction

    Get PDF
    Aims: Coronary guidewire-based diagnostic assessments with hyperemia may cause iatrogenic complications. We assessed the safety of guidewire-based measurement of coronary physiology, using intravenous adenosine, in patients with an acute coronary syndrome. Methods: We prospectively enrolled invasively managed STEMI and NSTEMI patients in two simultaneously conducted studies in 6 centers (NCT01764334; NCT02072850). All of the participants underwent a diagnostic coronary guidewire study using intravenous adenosine (140 Όg/kg/min) infusion for 1–2 min. The patients were prospectively assessed for the occurrence of serious adverse events (SAEs) and symptoms and invasively measured hemodynamics were also recorded. Results: 648 patients (n = 298 STEMI patients in 1 hospital; mean time to reperfusion 253 min; n = 350 NSTEMI in 6 hospitals; median time to angiography from index chest pain episode 3 (2, 5) days) were included between March 2011 and May 2013. Two NSTEMI patients (0.03% overall) experienced a coronary dissection related to the guidewire. No guidewire dissections occurred in the STEMI patients. Chest symptoms were reported in the majority (86%) of patient's symptoms during the adenosine infusion. No serious adverse events occurred during infusion of adenosine and all of the symptoms resolved after the infusion ceased. Conclusions: In this multicenter analysis, guidewire-based measurement of FFR and IMR using intravenous adenosine was safe in patients following STEMI or NSTEMI. Self-limiting symptoms were common but not associated with serious adverse events. Finally, coronary dissection in STEMI and NSTEMI patients was noted to be a rare phenomenon

    Diagnostic accuracy of 3.0-T magnetic resonance T1 and T2 mapping and T2-weighted dark-blood imaging for the infarct-related coronary artery in Non-ST-segment elevation myocardial infarction

    Get PDF
    Background: Patients with recent non–ST‐segment elevation myocardial infarction commonly have heterogeneous characteristics that may be challenging to assess clinically. Methods and Results: We prospectively studied the diagnostic accuracy of 2 novel (T1, T2 mapping) and 1 established (T2‐weighted short tau inversion recovery [T2W‐STIR]) magnetic resonance imaging methods for imaging the ischemic area at risk and myocardial salvage in 73 patients with non–ST‐segment elevation myocardial infarction (mean age 57±10 years, 78% male) at 3.0‐T magnetic resonance imaging within 6.5±3.5 days of invasive management. The infarct‐related territory was identified independently using a combination of angiographic, ECG, and clinical findings. The presence and extent of infarction was assessed with late gadolinium enhancement imaging (gadobutrol, 0.1 mmol/kg). The extent of acutely injured myocardium was independently assessed with native T1, T2, and T2W‐STIR methods. The mean infarct size was 5.9±8.0% of left ventricular mass. The infarct zone T1 and T2 times were 1323±68 and 57±5 ms, respectively. The diagnostic accuracies of T1 and T2 mapping for identification of the infarct‐related artery were similar (P=0.125), and both were superior to T2W‐STIR (P<0.001). The extent of myocardial injury (percentage of left ventricular volume) estimated with T1 (15.8±10.6%) and T2 maps (16.0±11.8%) was similar (P=0.838) and moderately well correlated (r=0.82, P<0.001). Mean extent of acute injury estimated with T2W‐STIR (7.8±11.6%) was lower than that estimated with T1 (P<0.001) or T2 maps (P<0.001). Conclusions: In patients with non–ST‐segment elevation myocardial infarction, T1 and T2 magnetic resonance imaging mapping have higher diagnostic performance than T2W‐STIR for identifying the infarct‐related artery. Compared with conventional STIR, T1 and T2 maps have superior value to inform diagnosis and revascularization planning in non–ST‐segment elevation myocardial infarction. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02073422

    Sex-based associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction

    Get PDF
    Objectives: We aimed to assess for sex differences in invasive parameters of acute microvascular reperfusion injury and infarct characteristics on cardiac MRI after ST-segment elevation myocardial infarction (STEMI). Methods: Patients with STEMI undergoing emergency percutaneous coronary intervention (PCI) were prospectively enrolled. Index of microcirculatory resistance (IMR) and coronary flow reserve (CFR) were measured in the culprit artery post-PCI. Contrast-enhanced MRI was used to assess infarct characteristics, microvascular obstruction and myocardial haemorrhage, 2 days and 6 months post-STEMI. Prespecified outcomes were as follows: (i) all-cause death/first heart failure hospitalisation and (ii) cardiac death/non-fatal myocardial infarction/urgent coronary revascularisation (major adverse cardiovascular event, MACE) during 5- year median follow-up. Results: In 324 patients with STEMI (87 women, mean age: 61 ± 12.19 years; 237 men, mean age: 59 ± 11.17 years), women had anterior STEMI less often, fewer prescriptions of beta-blockers at discharge and higher baseline N-terminal pro-B-type natriuretic peptide levels (all p < 0.05). Following emergency PCI, fewer women than men had Thrombolysis in Myocardial Infarction (TIMI) myocardial perfusion grades ≀ 1 (20% vs 32%, p = 0.027) and women had lower corrected TIMI frame counts (12.94 vs 17.65, p = 0.003). However, IMR, CFR, microvascular obstruction, myocardial haemorrhage, infarct size, myocardial salvage index, left ventricular remodelling and ejection fraction did not differ significantly between sexes. Female sex was not associated with MACE or all-cause death/first heart failure hospitalisation. Conclusion: There were no sex differences in microvascular pathology in patients with acute STEMI. Women had less anterior infarcts than men, and beta-blocker therapy at discharge was prescribed less often in women

    Comparative Prognostic Utility of Indexes of Microvascular Function Alone or in Combination in Patients with an Acute ST-Segment-Elevation Myocardial Infarction

    Get PDF
    Background—Primary percutaneous coronary intervention (PCI) is frequently successful at restoring coronary artery blood flow in patients with acute ST-segment elevation myocardial infarction, however, failed myocardial reperfusion commonly passes undetected in up to half of these patients. The index of microvascular resistance (IMR) is a novel invasive measure of coronary microvascular function. We aimed to investigate the pathological and prognostic significance of an index of microvascular resistance (IMR>40), alone or in combination with a coronary flow reserve (CFR≀2.0), in the culprit artery after emergency PCI for acute STEMI. Methods—Patients with acute STEMI were prospectively enrolled during emergency PCI, and categorized according to IMR (≀40 or >40) and CFR (≀2.0 or >2.0). Cardiac MRI was acquired 2 days and 6 months post-MI. All-cause death or first heart failure hospitalization was a pre-specified outcome (median follow-up duration 845 days). Results—IMR and CFR were measured in the culprit artery at the end of PCI in 283 STEMI patients (mean age 60 (12) years, 73% male). The median [interquartile range] IMR and CFR were 25 [15-48] and 1.6 [1.1-2.1], respectively. An IMR>40 was a multivariable associate of myocardial hemorrhage (odds ratio (OR) (95% confidence interval (CI)) 2.10 (1.03, 4.27); p=0.042. An IMR>40 was closely associated with microvascular obstruction. Symptom to reperfusion time, TIMI blush grade, and no (≀30%) ST segment resolution, were not associated with these pathologies. An IMR>40 was a multivariable associate of the changes in LV ejection fraction (coefficient (95% CI) (-2.12 (-4.02, -0.23); p=0.028) and LV end-diastolic volume (7.85 (0.41, 15.29); p=0.039) at 6 months, independent of infarct size. An IMR>40 (odds ratio 4.36 (95% CI 2.10, 9.06); p<0.001) was a multivariable associate of all-cause death or heart failure. Compared with an IMR>40, the combination of IMR>40 with CFR≀2.0 did not have incremental prognostic value. Conclusions—An IMR>40 is a multivariable associate of LV and clinical outcomes post-STEMI, independent of the size of infarction. Compared with standard clinical measures of the efficacy of myocardial reperfusion, including the ischemic time, ST-segment elevation, the angiographic blush grade and CFR, IMR has superior clinical value for risk stratification and may be considered as a reference test for failed myocardial reperfusion

    Persistence of Infarct Zone T2 Hyperintensity at 6 Months after Acute ST-Segment-Elevation Myocardial Infarction:Incidence, Pathophysiology, and Prognostic Implications

    Get PDF
    Background—The incidence and clinical significance of persistent T2 hyperintensity after acute ST-segment–elevation myocardial infarction (STEMI) is uncertain. Methods and Results—Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI: NCT02072850). Two hundred eighty-three STEMI patients (mean age, 59±12 years; 75% male) had cardiac magnetic resonance with T2 mapping performed at 2 days and 6 months post-STEMI. Persisting T2 hyperintensity was defined as infarct T2 >2 SDs from remote T2 at 6 months. Infarct zone T2 was higher than remote zone T2 at 2 days (66.3±6.1 versus 49.7±2.1 ms; P<0.001) and 6 months (56.8±4.5 versus 49.7±2.3 ms; P<0.001). Remote zone T2 did not change over time (mean change, 0.0±2.7 ms; P=0.837), whereas infarct zone T2 decreased (−9.5±6.4 ms; P<0.001). At 6 months, T2 hyperintensity persisted in 189 (67%) patients, who were more likely to have Thrombus in Myocardial Infarction flow 0 or 1 in the culprit artery (P=0.020), incomplete ST-segment resolution (P=0.037), and higher troponin (P=0.024). Persistent T2 hyperintensity was associated with NT-proBNP (N-terminal pro-B-type natriuretic peptide) concentration (0.57 on a log scale [0.42–0.72]; P=0.004) and the likelihood of adverse left ventricular remodeling (>20% change in left ventricular end-diastolic volume; 21.91 [2.75–174.29]; P=0.004). Persistent T2 hyperintensity was associated with all-cause death and heart failure, but the result was not significant (P=0.051). ΔT2 was associated with all-cause death and heart failure (P=0.004) and major adverse cardiac events (P=0.013). Conclusions—Persistent T2 hyperintensity occurs in two thirds of STEMI patients. Persistent T2 hyperintensity was associated with the initial STEMI severity, adverse remodeling, and long-term health outcome. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT02072850

    Coronary thermodilution waveforms after acute reperfused stsegment-elevation myocardial infarction:Relation to microvascular obstruction and prognosis

    Get PDF
    Background: Invasive measures of microvascular resistance in the culprit coronary artery have potential for risk stratification in acute ST‐segment–elevation myocardial infarction. We aimed to investigate the pathological and prognostic significance of coronary thermodilution waveforms using a diagnostic guidewire. Methods and Results: Coronary thermodilution was measured at the end of percutaneous coronary intervention, (PCI) and contrast‐enhanced cardiac magnetic resonance imaging (MRI) was intended on day 2 and 6 months later to assess left ventricular (LV) function and pathology. All‐cause death or first heart failure hospitalization was a pre‐specified outcome (median follow‐up duration 1469 days). Thermodilution recordings underwent core laboratory assessment. A total of 278 patients with acute ST‐segment elevation myocardial infarction EMI (72% male, 59±11 years) had coronary thermodilution measurements classified as narrow unimodal (n=143 [51%]), wide unimodal (n=100 [36%]), or bimodal (n=35 [13%]). Microvascular obstruction and myocardial hemorrhage were associated with the thermodilution waveform pattern (P=0.007 and 0.011, respectively), and both pathologies were more prevalent in patients with a bimodal morphology. On multivariate analysis with baseline characteristics, thermodilution waveform status was a multivariable associate of microvascular obstruction (odds ratio [95% confidence interval]=5.29 [1.73, 16.22];, P=0.004) and myocardial hemorrhage (3.45 [1.16, 10.26]; P=0.026), but the relationship was not significant when index of microvascular resistance (IMR) >40 or change in index of microvascular resistance (5 per unit) was included. However, a bimodal thermodilution waveform was independently associated with all‐cause death and hospitalization for heart failure (odds ratio [95% confidence interval]=2.70 [1.10, 6.63]; P=0.031), independent of index of microvascular resistance>40, ST‐segment resolution, and TIMI (Thrombolysis in Myocardial Infarction) Myocardial Perfusion Grade. Conclusions: The thermodilution waveform in the culprit coronary artery is a biomarker of prognosis and may be useful for risk stratification immediately after reperfusion therapy

    Circumferential strain predicts major adverse cardiovascular events following an acute ST-segment-elevation myocardial infarction

    Get PDF
    Purpose: To investigate the prognostic value of circumferential left ventricular (LV) strain measured by using cardiac MRI for prediction of major adverse cardiac events (MACE) following an acute ST-segment–elevation myocardial infarction (STEMI). Materials and Methods: Participants with acute STEMI were prospectively enrolled from May 11, 2011, to November 22, 2012. Cardiac MRI was performed at 1.5 T during the index hospitalization. Displacement encoding with stimulated echoes (DENSE) and feature tracking of cine cardiac MRI was used to assess circumferential LV strain. MACE that occurred after discharge were independently assessed by cardiologists blinded to the baseline observations. Results: A total of 259 participants (mean age, 58 years ± 11 [standard deviation]; 198 men [mean age, 58 years ± 11] and 61 women [mean age, 58 years ± 12]) underwent cardiac MRI 2.2 days ± 1.9 after STEMI. Average infarct size was 18% ± 13 of LV mass and circumferential strain was −13% ± 3 (DENSE method) and −24% ± 7 (feature- tracking method). Fifty-one percent (131 of 259 participants) had presence of microvascular obstruction. During a median follow-up period of 4 years, 8% (21 of 259) experienced MACE. Area under the curve (AUC) for DENSE was different from that of feature tracking (AUC, 0.76 vs 0.62; P = .03). AUC for DENSE was similar to that of initial infarct size (P = .06) and extent of microvascular obstruction (P = .08). DENSE-derived strain provided incremental prognostic benefit over infarct size for prediction of MACE (hazard ratio, 1.3; P < .01). Conclusion: Circumferential strain has independent prognostic importance in study participants with acute ST-segment–elevation myocardial infarction
    corecore